Dr. Imed Zaguia

Dr. Imed Zaguia
Professeur titulaire et directeur adjoint du département
Bureau:
Édifice Girouard, local 302
Téléphone:
(613) 541-6000 poste 6078
Télécopieur:
(613) 541-6584
Courriel:
Département de Mathématiques et informatique

Adresse du collège

Collège militaire royal du Canada
CP 17000, Succursale Forces
Kingston (Ontario) CANADA
K7K 7B4

Intérêts de recherche

  • Ensembles ordonnés
  • Extensions linéaires
  • Groupes ordonnés
  • Graphes
  • Combinatoire
  • Bien-Quasi-Ordonné
  • Classes Héréditaires
  • Théorie des Relations

Courte biographie

Je suis professeur de mathématiques et d'informatique. J'ai enseigné la plupart des cours de premier cycle en mathématiques et plusieurs cours en informatique.

Mes intérêts de recherche portent essentiellement sur l'étude des structures combinatoires et relationnelles. L'un de mes intérêts de recherche concerne l'étude des classes de permutations, un domaine de recherche très actif motivé par la conjecture de Stanly-Wilf, résolue en 2004 par Marcus et Tardos. Les permutations apparaissent dans l'étude des bichaînes, des graphes de permutations et plus généralement dans l'étude des structures relationnelles. Les problèmes étudiés dans ce domaine incluent l'étude des classes héréditaires de permutations et de leurs fonctions de croissance.
J'étudie en particulier la question du bel-ordre dans les objets combinatoires et la construction correspondante d'antichaînes infinies.

J'étudie également la structure des groupes ordonnés. Ce sont des groupes dotés d'une relation d'ordre partiel compatible. J'étudie l'interaction entre les propriétés de l'ordre et le la structure du groupe.

Je travaille également sur une conjecture centrale liée aux extensions linéaires des ensembles partiellement ordonnés : la conjecture 1/3-2/3 (1968, non résolue). La conjecture stipule que, si l'on effectue un tri par comparaison d'un ensemble d'objets, alors, quelles que soient les comparaisons déjà effectuées, il est toujours possible de choisir la comparaison suivante de telle manière qu'elle réduise le nombre d'ordres triés possibles d'un facteur 2/3 ou mieux. Ce problème a été répertorié comme un problème non résolu dans le volume fondateur de la revue Order, une revue sur la théorie des ensembles ordonnés et ses applications.

Publications sélectionnées

  • M. Pouzet et I. Zaguia, Metric properties of incomparability graphs with an emphasis on paths. Contrib. Discrete Math. 17 (2022), no. 1, 109–141.
  • M. Pouzet et I. Zaguia, Graphs containing finite induced paths of unbounded length. Discrete Math. Theor. Comput. Sci. 23 ([2021–2022]), no. 2, Paper No. 3, 28 pp.
  • Kai Ting Keshia Yap, David Wehlau, et Imed Zaguia, Permutations Avoiding Certain Partially-ordered Patterns. Electron. J. Combin. 28 (2021), no. 3, Paper No. 3.18, 41 pp.
  • I. Zaguia, Greedy balanced pairs in N -free ordered sets. Discrete Applied Mathematics 289 , (2021), 539–544.
  • I. Zaguia, The 1 / 3 − 2 / 3 Conjecture for Ordered Sets whose Cover Graph is a Forest. Order 36 , (2019), 335–347.
  • M. Pouzet et I. Zaguia, Interval orders, semiorders and ordered groups. J. Math. Psych. 89 (2019), 51–66
  • D. Rorabaugh, C. Tardif, D. Wehlau et I. Zaguia, Chromatic numbers of iterated arc graphs . Comment.Math.Univ.Carolin. 59 ,3 (2018) 277–283.
  • C. Delhomme et I. Zaguia, Countable linear orders with disjoint infinite intervals are mutually orthogonal. Discrete Mathematics. 341 , (2018), 1885–1899. 9.
  • T. Bier et I. Zaguia, Some inequalities for orderings of acyclic digraphs. Contrib. Discrete Math. 13 (2018), Pages 150–160.
  • N. Sauer et I. Zaguia, Permutations avoiding connected subgraphs . Contrib. Discrete Math. 12 (2017), Pages 215–230.
  • C. Laflamme, M. Pouzet, N. Sauer et I. Zaguia, Pairs of orthogonal countable ordinals. Discrete Mathematics 28 (2014), 35–44.
  • I. Zaguia, The 1 / 3−2 / 3 Conjecture for N -free ordered sets. Electronic Journal of Combinatorics. 19 (2012), #P29

Une liste complète de ses publications est disponible sur  Google Scholar

Date de modification